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A new fundamentally based formulation of nonlocal effects in the rapid pressure-strain correlation in tur-
bulent flows has been obtained. The resulting explicit form for the rapid pressure-strain correlation accounts for
nonlocal effects produced by spatial variations in the mean-flow velocity gradients and is derived through
Taylor expansion of the mean velocity gradients appearing in the exact integral relation for the rapid pressure-
strain correlation. The integrals in the resulting series expansion are solved for high- and low-Reynolds number
forms of the longitudinal correlation function f�r�, and the resulting nonlocal rapid pressure-strain correlation
is expressed as an infinite series in terms of Laplacians of the mean strain rate tensor. This formulation is used
to obtain a nonlocal transport equation for the turbulence anisotropy that is expected to provide improved
predictions of the anisotropy in strongly inhomogeneous flows.
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I. INTRODUCTION

By far the most practical approaches for simulating turbu-
lent flows are based on the ensemble-averaged Navier-Stokes
equations. However, such approaches require a suitably ac-
curate closure model for the Reynolds stress anisotropy ten-
sor aij, defined as

aij �
ui�uj�

k
−

2

3
�ij , �1�

where ui�uj� are the Reynolds stresses and k� 1
2ui�ui� is the

turbulence kinetic energy. Over the past half century, a wide
range of closures for aij have been proposed. Of these, the
so-called Reynolds stress transport models that solve the full
set of coupled partial differential equations for aij are cur-
rently regarded as having the highest fidelity among practical
closures. Such closures start from the exact transport equa-
tion for aij, namely,

Daij

Dt
= − �P

�
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�Dij − �aij +
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3
�ij�D� , �2�

where for clarity we are restricting the presentation to incom-
pressible flows. In Eq. �2�, D /Dt is the mean-flow material
derivative, Pij �−�ui�ul�� ūj /�xl+uj�ul�� ūi /�xl� is the produc-
tion tensor, �ij is the dissipation tensor, and all remaining
viscous, turbulent, and pressure transport terms are contained
in Dij, with P� Pnn /2, ���nn /2, and D�Dnn /2. In such
Reynolds stress transport closures, the production tensor
needs no modeling since ui�uj� is obtained from aij, and stan-
dard models for �ij and Dij are discussed in Refs. �1,2	. The
principal remaining difficulty is in accurately representing
�ij in Eq. �2�, namely, the pressure-strain correlation tensor

�ij�x� �
2

�
p��x�Sij� �x� , �3�

where

Sij� �
1

2
� �ui�

�xj
+

�uj�

�xi
� �4�

are the strain rate fluctuations. The pressure-strain correlation
has received considerable attention, however developing a
fundamentally based yet practically implementable form for
�ij remains one of the primary challenges in turbulence re-
search.

The difficulty in representing �ij stems in large part from
the inherently nonlocal nature of the pressure-strain correla-
tion, since the local pressure p� in Eq. �3� is given by an
integral over the entire spatial domain of the flow. Some
progress has been made by splitting �ij into the sum of
“slow” and “rapid” parts �3	, where the rapid part �ij

�r� is so
named due to its direct dependence on the mean-flow veloc-
ity gradients �ūi /�xj, variations in which have an immediate
effect on Daij /Dt. Typically, the slow part �ij

�s� is represented
in terms of the local values of aij and � �4	. For the rapid
part, it has been common �e.g., �3–5	� to take the mean ve-
locity gradients as being sufficiently homogeneous that they
can be brought outside the integral. Under certain conditions
�5	 the remaining integral can then be solved for the local
part of �ij

�r�. This is then typically combined with additional
ad hoc terms involving aij to model the rapid part solely in
terms of local flow variables. Together with the assumed lo-
cal representation for the slow part, this yields a local formu-
lation for �ij that allows Eq. �2� to be solved but that ne-
glects nonlocal effects in the evolution of the anisotropy.

Such purely local models for �ij have allowed relatively
accurate simulations of homogeneous turbulent flows, where
by construction there are no spatial variations in �ūi /�xj and
thereby all nonlocal effects vanish. However most practical
situations involve strongly inhomogeneous flows, where
large-scale structure and other manifestations of spatial
variations in the mean-flow velocity gradients can produce*Corresponding author; peterha@umich.edu
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significant nonlocal effects in the turbulence, the neglect of
which in �ij can lead to substantial inaccuracies in the re-
sulting predictions of the anisotropy. Such nonlocal effects
are significant even in free shear flows such as jets, wakes,
and mixing layers and can become especially important in
near-wall flows, where flow properties vary rapidly in the
wall-normal direction. Improving the fidelity of turbulent
flow simulations requires a fundamentally based formulation
for nonlocal effects in �ij

�r� to account for spatial variations of
velocity gradients in the ensemble-averaged flow.

Various methods for addressing such spatial variations
have been proposed, however nearly all suffer from a lack of
systematic physical and mathematical justification. For near-
wall flows, by far the most common yet also least satisfying
approach is the use of empirical “wall damping functions”
�see Ref. �2	�. Although such functions are relatively
straightforward to implement, they are also distinctly ad hoc
and as a consequence do not perform well across a wide
range of flows. Moreover, wall functions typically conflate
the treatment of a number of near-wall effects that in fact
originate from distinctly different physical mechanisms, in-
cluding low-Reynolds number effects, large strain effects,
and wall-induced kinematic effects, and are not formulated
to specifically account for nonlocality due to spatial varia-
tions in the mean-flow gradients.

In the following we depart from these prior approaches by
systematically deriving a nonlocal formulation for the rapid
pressure-strain correlation from the exact integral relation for
the rapid part of �ij. Specifically, nonlocal effects due to
mean-flow velocity gradients are accounted for through Tay-
lor expansion of �ūi /�xj in the rapid pressure-strain integral.
The resulting nonlocal form of the rapid pressure-strain cor-
relation �ij

�r� appears as a series of Laplacians of the mean
strain rate tensor. The only approximation involved—beyond
the central hypothesis on which the present formulation is
based—is an explicit form for the longitudinal correlation
function f�r�, although the effect of this is only to determine
specific values of the coefficients in an otherwise fundamen-
tal result for the nonlocal effects in �ij

�r�. The coefficients are
obtained here for the exponential form of f�r� appropriate for
high-Reynolds numbers and for the exact Gaussian f�r� that
applies at low-Reynolds numbers. The resulting formulation
for the rapid part of �ij then provides a nonlocal anisotropy
transport equation that can be used with any number of clo-
sure approaches for representing aij, including Reynolds
stress transport models as well as explicit stress models suit-
able for two-equation closures.

II. NONLOCAL FORMULATION FOR THE PRESSURE-
STRAIN CORRELATION

The starting point for developing a fundamentally based
representation for �ij is the exact Poisson equation for the
pressure fluctuations p� appearing in Eq. �3�, namely,

1

�
�2p� = − 2

� ūk

�xl

�ul�

�xk
−

�2

�xk � xl
�uk�ul� − uk�ul�� �5�

�e.g., �6	�. Beginning with Chou �3	, it has been common to
write p� in terms of rapid, slow, and wall parts as

p� � p��r� + p��s� + p��w�, �6�

defined by their respective Poisson equations from Eq. �5� as

1

�
�2p��r� = − 2

� ūk

�xl

�ul�

�xk
, �7�

1

�
�2p��s� = −

�2

�xk � xl
�uk�ul� − uk�ul�� , �8�

1

�
�2p��w� = 0. �9�

The effect of p��w� is significant in Eq. �2� only in the ex-
treme near-wall region of wall-bounded flows �6,7	. The re-
maining rapid and slow parts produce corresponding rapid
and slow contributions to the pressure-strain correlation �ij
in Eq. �3�, with Green’s function solutions of Eqs. �7� and �8�
giving these as �3	

�ij
�r��x� =

1

�



R

� ūk�x̂�
� x̂l

�ul��x̂�
� x̂k

Sij� �x�
d3x̂

�x − x̂�
, �10�

�ij
�s��x� =

1

2�



R

�2�uk�ul��x̂

� x̂k � x̂l

Sij� �x�
d3x̂

�x − x̂�
, �11�

where the integration spans the entire flow domain R.
The slow part �ij

�s� is typically not treated in a systematic
fashion via integration of Eq. �11�. Instead, nearly all exist-
ing representations for �ij

�s� are based on insights obtained
from the return to isotropy of various forms of initially
strained grid turbulence. The most common representation
for �ij

�s� is Rotta’s �4	 linear form

�ij
�s� = − C1�aij , �12�

where all variables are local and C1 is typically in the range
1.5–1.8 �e.g., �2,6	�. Sarkar and Speziale �8,9	 argued that
additional quadratic terms should be included in Eq. �12�, but
it has been noted �2	 that these are typically small. As a
result, representations for �ij

�s� remain relatively simple, and
the form in Eq. �12� continues to be widely used.

By contrast, �ij
�r� has received substantially greater atten-

tion. The direct effect of the mean velocity gradients �ūk /�xl
on this rapid part of the pressure-strain correlation is appar-
ent in Eq. �10�. In the following sections, we use the integral
in Eq. �10� to develop a fundamentally based representation
for �ij

�r� that accounts for nonlocal effects resulting from spa-
tial nonuniformities in the mean velocity gradients.

A. Prior local formulation for �ij
(r)(x)

Chou �3	 first suggested the notion of using the integral
form in Eq. �10� to obtain a representation for the rapid
pressure-strain correlation. Subsequently, Crow �5	 used that
approach to rigorously derive the purely local part of �ij

�r� by
assuming the mean velocity gradients in Eq. �10� to vary
slowly enough that they could be taken as constant over the
length scale on which the two-point correlation
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��ul��x̂� /�x̂k	Sij� �x� in Eq. �10� is nonzero. Under such condi-
tions, the mean velocity gradient in Eq. �10� can be brought
outside the integral, and �ij

�r� then becomes

�ij
�r��x� �

� ūk�x�
�xl

·
1

�



R

�ul��x̂�
� x̂k

Sij� �x�
d3x̂

�x − x̂�
. �13�

With Sij� �x� in Eq. �3�, the integrand in Eq. �13� involves
two-point correlations among velocity gradients of the form

�ui��x�
�xj

�ul��x̂�
� x̂k

= −
�2Ril�r�
�rj � rk

, �14�

where Ril�r� denotes the velocity fluctuation correlation

Ril�r� � ui��x�ul��r + x� �15�

with r� x̂−x. Defining �3–5	

Miljk � −
1

2�



R

�2Ril�r�
�rj � rk

d3r

r
, �16�

the rapid pressure-strain correlation in Eq. �13� can then be
expressed as

�ij
�r��x� �

� ūk�x�
�xl

�Miljk + Mjlik	 . �17�

Using the homogeneous isotropic form of Ril�r�, namely,

Ril�r� =
2

3
k� f�r��il +

r

2

df

dr
��il −

rirl

r2 �� �18�

with

f�r� �
3

2

u��x + r�u��x�
k

, �19�

where k is the turbulence kinetic energy, it can be shown �5	
that Miljk in Eq. �16� becomes

Miljk = 2
15k�4� jk�il − �ij�kl − � jl�ki� , �20�

where the leading k again denotes the turbulence kinetic en-
ergy. Using Eq. �20� in Eq. �17� with �ūk /�xk�0 then gives
the rapid pressure-strain correlation as

1

k
�ij

�r� �
4

5
S̄ij , �21�

where S̄ij is the local mean-flow strain rate tensor

S̄ij �
1

2
� � ūi

�xj
+

� ūj

�xi
� . �22�

Typically, Eq. �21� is used as the leading-order isotropic
term in tensorial expansions for the rapid pressure-strain cor-
relation �ij

�r��x�, where the remaining terms are expressed in
terms of the local anisotropy aij and the local mean velocity
gradient tensor. Note however that such representations are
still purely local since in going from Eq. �10� to Eq. �13� all
spatial variations in the mean velocity gradients �ūk /�xl over
the length scale on which the two-point correlations
��ul��x̂� /�x̂k	Sij� �x� are nonzero were ignored. The resulting

neglect of nonlocal contributions to �ij
�r� from that approxi-

mation can lead to substantial inaccuracies in many turbulent
flows, including wall-bounded and free shear flows. For ex-
ample, Bradshaw et al. �10	 showed that in fully developed
turbulent channel flow the homogeneity approximation used
to obtain Eq. �13� is inaccurate for y+�30. It can be further
shown �e.g., �11,12	� that the dominant component S̄12 of the
mean strain begins to vary dramatically at locations as far
from the wall as y+�60. Comparable variations in mean
velocity gradients are also found in turbulent jets, wakes, and
mixing layers, where there are substantial spatial variations

in S̄12 across the flow. Indeed in most turbulent flows of
practical interest, there are significant variations in the mean-
flow velocity gradients that will produce nonlocal contribu-
tions to the rapid pressure-strain correlation via Eq. �10�. In
such situations, it may be essential to account for these non-
local effects in �ij

�r� to obtain accurate results from any clo-
sures based on Eq. �2�.

B. Present nonlocal formulation for �ij
(r)(x)

In the following, nonlocal effects due to spatial variations
in the mean flow are accounted for in �ij

�r� through Taylor
expansion of the mean velocity gradients appearing in Eq.
�10�. The central hypothesis in the approach developed here
is that the nonlocality in �ij

�r� is substantially due to spatial
variations in �ūk /�xl in Eq. �10� and that in order to address
this effect all other factors in Eq. �10� can be adequately
represented by their homogeneous isotropic forms. This al-
lows a formulation of the rapid pressure-strain correlation
analogous to that in Eq. �21� but goes beyond a purely local
formulation to take into account the effects of spatial varia-
tions in the mean-flow gradients.

We begin by defining the ensemble-averaged velocity gra-
dients

Akl � � ūk/�xl �23�

and account for spatial variations in Akl�x̂� in Eq. �10� via its
local Taylor expansion about the point x as

Akl�x̂� = Akl�x� + rm
�Akl

�xm
+

rmrp

2

�2Akl

�xm � xp
+ ¯

+
1

n!
�rmrp. . .�

�nAkl

�xm � xp. . .
, �24�

where r� x̂−x and all derivatives of Akl are evaluated at x,
and where n is the order of the expansion. As n→�, the
expansion provides an exact representation of all spatial
variations in Akl�r+x� from purely local information at x.
Substituting Eq. �24� into Eq. �10� then gives

�ij
�r��x� = 


n=0

�
�nAkl�x�

�xm � xp. . .
��mp. . .�Miljk

�n� + �mp. . .�Mjlik
�n� 	 , �25�
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where

�mp. . .�Miljk
�n� � −

1

2�n!



R
� rmrp. . .

rn �rn−1�2Ril�r�
�rjrk

d3r .

�26�

The nth-order term in Eq. �25� involves n derivatives of Akl

as well as n total indices �mp. . .� in �mp. . .�Miljk
�n� .

From the central hypothesis on which the present treat-
ment of nonlocal effects in �ij

�r� is based, we represent Ril�r�
in Eq. �26� by the form in Eq. �18�. With the relations

�r

�rj
=

rj

r
,

�ri

�rj
= �ij , �27�

the double derivative of Ril�r� in Eq. �26� is then given by

�2Ril�r�
�rj � rk

=
k

3
�aijkl

1

r

df

dr
+ bijkl

d2f

dr2 + cijklr
d3f

dr3� , �28�

where we have introduced the compact notation

aijkl � 3� jk�il − �ij�kl − � jl�ki − 3	 jk�il + �ij	lk + � jl	ik

+ �ik	lj + �kl	ij + �kj	il − 3
iljk, �29a�

bijkl � �il� jk + 3	 jk�il − �ij	lk − �lj	ik − �ik	lj

− �kl	ij − �kj	il + 3
iljk, �29b�

cijkl � �il	 jk − 
iljk, �29c�

with

	ij �
rirj

r2 , 
ijkl �
rirjrkrl

r4 . �30�

Writing the differential in Eq. �26� in spherical coordinates
as d3r=r2drd�, where d�=sin �d�d
 and r= �0,��,
�= �0,�	, and 
= �0,2��, since f�r� has no dependence on
� or 
 and since aijkl, bijkl, and cijkl in Eq. �29� have no
dependence on r, the integrals over these terms in Eq. �26�
can be considered separately. Using Eq. �28�, the integral in
Eq. �26� can then be written as

�mp. . .�Miljk
�n� = −

k

6�n!�
0

�

rndf

dr
dr


�

aijkl
rmrp. . .

rn d�

+ 

0

�

rn+1d2f

dr2 dr

�

bijkl
rmrp. . .

rn d�

+ 

0

�

rn+2d3f

dr3 dr

�

cijkl
rmrp. . .

rn d�� , �31�

where k in the leading factor is the turbulence kinetic energy.
With the corresponding expression for �mp. . .�Mjlik

�n� , Eqs. �25�
and �31� provide a nonlocal form for the rapid pressure-strain
rate correlation �ij

�r� in terms of the longitudinal correlation
f�r�.

C. Representing the longitudinal correlation f(r)

As will be seen later, in Eq. �31� the integrals over d� can
be readily evaluated. Moreover, for n=0 the integrals over dr

are independent of the specific form for f�r�, and thus Miljk
�0�

can be obtained from the general properties

� = 

0

�

f�r�dr, f�0� = 1, f��� = 0, �32�

where � is the integral length scale of the turbulence. How-
ever for n�0, evaluating the integrals over dr to obtain

�mp. . .�Miljk
�n� requires an explicit form for the longitudinal cor-

relation function f�r�. We can anticipate, however, that the
precise form may not be of central importance to our even-
tual result for �ij

�r� since the only role of f�r� is to weight the
contributions from velocity gradients Akl�x+r� around the
local point x. It is thus likely that the integral scale � in Eq.
�32� plays the most essential role since it determines the size
of the region around x from which nonlocal contributions to
the integral for �ij

�r� will be significant. When r is scaled by
�, the precise form of f�r /�� is likely to be far less impor-
tant for most reasonable forms that satisfy the constraints in
Eq. �32�.

Despite its fundamental significance in turbulence theory,
the form of f�r� for any r and all Reynolds numbers
Re��k1/2� /�, where k is the turbulence kinetic energy and
� is the integral length scale in Eq. �32�, has yet to be de-
termined even for homogeneous isotropic turbulence. Per-
haps the most widely accepted representation for f�r� comes
from Kolmogorov’s 1941 universal equilibrium hypotheses.
For large values of Re� and inertial-range separations
���r��, where �����3 /��1/4 is the viscous diffusion
scale, the mean-square velocity difference is taken to depend
solely on r and the turbulent dissipation rate �, and thus on
dimensional grounds must scale as

�u��x + r� − u��x�	2 � �2/3r2/3. �33�

Expanding the left-hand side of Eq. �33� and using Eq. �19�
gives

4
3k�1 − f�r�	 � �2/3r2/3. �34�

Denoting the proportionality constant in Eq. �34� as Cf and
rearranging gives the inertial-range form of f�r� as

f�r� = 1 −
3

4
Cf� r

k3/2/��2/3
. �35�

From Hinze �13	, a value for Cf can be obtained in terms of
the Kolmogorov constant K��8 /9	�2/3�1.7, where
	�0.405, as

Cf = 81
55��4/3�K � 2.24, �36�

where we have used ��4 /3��0.893. Expressing � in terms
of k and � on dimensional grounds as

� = C�

k3/2

�
, �37�

where C� is a presumably universal constant, then allows the
inertial-range form of f�r� in Eq. �35� to be given as
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f�r/�� = 1 −
3

4
CfC�

2/3� r

�
�2/3

. �38�

Note that the form for f�r� in Eq. �38� is valid only for
inertial-range r values, namely, ���r��, and thus for
Re�

−3/4� �r /���1. As a consequence, this form cannot be
used directly to evaluate the r integrals in Eq. �31�. However,
experimental data from a wide range of turbulent free shear
flows �e.g., �14,15	� and direct numerical simulation results
for wall-bounded turbulent flows �e.g., �11,12	� show that
f�r� can be reasonably represented by the exponential form

f�r/�� = e−r/�, �39�

as can be seen in Figs. 1�a�–1�c�. Moreover, C� in Eq. �37�
can be chosen to closely match f�r� in Eq. �39� with the
fundamentally based inertial-range form in Eq. �38�. Indeed,
Fig. 2 shows that with

C� � 0.23 �40�

the exponential form in Eq. �39� gives reasonable agreement
with the inertial-range form in Eq. �38� up to r /��1. This
exponential form is thus here taken to represent f�r� in
high-Re� turbulent flows and will be used in Eq. �31� to
obtain an explicit form for the nonlocal rapid pressure-strain
correlation. Since Eq. �25� with Eq. �31� is a rigorous formu-
lation for �ij

�r� within the central hypothesis on which the
present approach is based, the exponential representation for
f�r� is the principal additional approximation that will be
used below in deriving the present result for the rapid
pressure-strain correlation.

While the exponential f�r� appears appropriate for high
Re�, in the Re�→0 limit the Kármán-Haworth equation �16	
allows a solution for f�r�. Batchelor and Townsend �17	
showed that when inertial effects can be neglected, this equa-
tion can be solved exactly, giving a Gaussian form for f�r� as

f�r/�� = exp�−
�

4
� r

�
�2� . �41�

Ristorcelli �18	 proposed a blended form for f�r� that satis-
fies various conditions placed on f�r�, including those in Eq.
�32�, while recovering the Gaussian f�r� in Eq. �41� as
Re�→0 and the exponential f�r� in Eq. �39� as Re�→�. It
should be possible to use such blended forms for f�r� to
obtain a nonlocal pressure-strain correlation valid for all
Reynolds numbers, following the procedure developed
herein. In the following we obtain the nonlocal rapid
pressure-strain correlation using the high-Reynolds number
exponential form in Eq. �39�, which should be accurate for
the vast majority of turbulent flow problems, and then show
how this result can be extended to the low-Reynolds number
limit using Eq. �41�.

D. Resulting nonlocal pressure-strain correlation

Using Eq. �39�, it can be shown that the integrals over dr
in Eq. �31� give
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(a)

Axisymmetric Jet

Experimental data [14]
Exponential f (r), Eq. (39)
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Channel Flow

DNS results [12]
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FIG. 1. �Color online� �a� Comparison of exponential f�r� in Eq.
�39� with experimental data from axisymmetric turbulent jet �14	
and �b� planar turbulent mixing layer �15	 and with �c� direct nu-
merical simulation �DNS� data from turbulent channel flow at Re�

=650 �12	.
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FIG. 2. �Color online� Comparison of inertial-range and expo-
nential forms for f�r /�� in Eqs. �38� and �39�, respectively. Note
that C�=0.23 in Eq. �40� gives reasonable agreement between the
two forms in the inertial-range Re�

−3/4� �r /���1.
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0

�

rndf

dr
dr = − n ! �n, �42a�



0

�

rn+1d2f

dr2 dr = �n + 1 �! �n, �42b�



0

�

rn+2d3f

dr3 dr = − �n + 2�!�n. �42c�

With these results, Eq. �31� is then written as

�mp. . .�Miljk
�n� = k

�n

6�



�
� rmrp. . .

rn �
��aijkl − �n + 1�bijkl + �n + 2��n + 1�cijkl	d� .

�43�

The remaining integrals over d� are all of the form
�rmrp. . .� /rn and can be solved using the general integral re-
lations



�

rmrprqrs. . .

rn d� = 0, n = odd, �44a�



�

rmrprqrs. . .

rn d�

=
4�

�n + 1� !!
��mp�qs . . . + �mq�ps . . . + ¯	, n = even,

�44b�

where the double factorial is defined as

n !! � n�n − 2��n − 4� . . . , �45�

with 0!! �1 and �−1� !! �1, and the terms in brackets on the
right-hand side of Eq. �44b� represent all possible combina-
tions of delta functions for the indices �m , p ,q ,s , . . .�. For
any n, there are �n−1�!! such delta function terms, and each
term consists of �n /2� delta functions.

In Eq. �43�, for n=0 it can be shown using Eq. �44b� that

Miljk
�0� = k 2

15�4�il� jk − �ij�kl − � jl�ki� . �46�

For n=1, from Eq. �44a� mMiljk
�1� =0, as applies to all odd-n

cases. For n=2, from Eq. �44b�

mpMiljk
�2� = k

2�2

315
�4� jk�il�mp − 3��ij�kl�mp + � jl�ik�mp�

− 24��il� jm�kp + �il�km� jp� + 4��ij�lm�kp + �ij�km�lp

+ � jl�im�kp + � jl�km�ip + �ik�lm� jp + �ik� jm�lp

+ �kl�im� jp + �kl� jm�ip + � jk�im�pl + � jk�lm�ip�	 .

�47�

Contracting Eqs. �46� and �47� with Akl and its derivatives as
in Eq. �25� then gives

Akl�Miljk
�0� + Mjlik

�0� 	 = 4
5kS̄ij �48�

and

�2Akl

�xm � xp
�mpMiljk

�2� + mpMjlik
�2� 	 =

68

315
k�2�2S̄ij , �49�

where we have used Akk�0. From Eqs. �48� and �49�, the
first two terms in the present formulation for the pressure-
strain correlation in Eq. �25� are thus given by

1

k
�ij

�r�=
4

5
S̄ij +

68

315
�2�2S̄ij + ¯ . �50�

The first term on the right in Eq. �50� is the same as that in
Eq. �21� obtained by Crow �5	 assuming spatially uniform
mean velocity gradients. Thus the second term in Eq. �50� is
the first-order nonlocal correction accounting for spatial
variations in the mean velocity gradient field.

To obtain the remaining higher-order nonlocal corrections
in Eq. �50�, it is helpful to contract Eq. �43� with the deriva-
tives of Akl and again use Akk�0. It is then readily shown
that all terms involving �kl, �km, �kp, etc., from the integral
over d� are zero when contracted with the derivatives of Akl,
and as a result the coefficients in Eq. �29� can be simplified
as

aijkl = 4� jk�il − � jl�ki − bijkl, �51a�

bijkl = �il� jk + bijkl
� , �51b�

bijkl
� = 3	 jk�il − �lj	ik − �ik	lj − �kj	il + 3
iljk, �51c�

cijkl = �il	 jk − 
iljk, �51d�

where bijkl
� has been introduced to simplify the notation. Us-

ing Eq. �51� and contracting Eq. �43� with the derivatives of
Akl we thus obtain

�nAkl

�xm � xp. . .
��mp. . .�Miljk

�n� 	

= k�n 1

6�
� �nAkl

�xm � xp. . .
�


�
� rmrp. . .

rn �
���2 − n��il� jk − �ik� jl − �n + 2�bijkl

�

+ �n + 2��n + 1�cijkl	d� . �52�

From Eq. �44a� all odd-n terms in Eq. �52� are zero. For even
n, the integrals over d� are readily evaluated using Eq.
�44b�, and it can then be shown that Eq. �52� becomes
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�nAkl

�xm � xp. . .
��mp. . .�Miljk

�n� 	

= k�n2

3
� �n − 1� !!

�n + 1� !!
��2�n/2��2 − n�Aji − Aij	

−
�n + 2��n − 1� !!

�n + 3� !!
��2�n/2��2 − n�Aji − Aij	

+
�n + 2��n + 1� !!

�n + 3� !!
��2�n/2�Aji + Aij	

−
�n + 2��n + 4��n + 1� !!

�n + 5� !!
��2�n/2�Aji + Aij	� .

�53�

Adding the corresponding result for �mp. . .�Mjlik
�n� to Eq. �53�

then gives �ij
�r� from Eq. �25� as

1

k
�ij

�r� = 

n=0,even

�

�C2
�n��n��2�n/2S̄ij	 , �54�

where the coefficients are

C2
�n� �

4�n2 + 2n + 9�
3�n + 5��n + 3��n + 1�

. �55�

Since the indices in Eqs. �54� and �55� are required to be
even, we can change the index n to �2n−2�, where then
n=1,2 ,3 , . . .. This gives the final result for the nonlocal
rapid pressure-strain correlation from the present approach as

1

k
�ij

�r� = C2
�1�S̄ij + 


n=2

�

�C2
�n��2n−2��2�n−1S̄ij	 �56�

with

C2
�n� �

16n2 − 16n + 36

3�2n + 3��4n2 − 1�
, �57�

where � in Eq. �56� is from Eqs. �37� and �40�. In Eq. �57� it
may be readily verified that C2

�1�=4 /5 and C2
�2�=68 /315, con-

sistent with Eqs. �21� and �50�. The first term on the right in
Eq. �57� accounts for purely local effects on �ij

�r�, while the
series term accounts for nonlocal effects.

The result in Eqs. �56� and �57� is a rigorous formulation
for the rapid pressure-strain correlation �ij

�r� that accounts for
nonlocal effects due to spatial variations in the mean velocity
gradients. Within the central hypothesis on which the present
approach is based, the principal approximation used in deriv-
ing Eqs. �56� and �57� is the exponential form of f�r� in Eq.
�39� for high-Re� turbulent flows. However, the only effect
of this choice of f�r� is in the resulting coefficients C2

�n� in
Eq. �57�. All other aspects of Eq. �56� are unaffected by the
particular form of f�r� and instead result directly from the
fundamental approach taken here in solving Eq. �10� via Tay-
lor expansion of the mean velocity gradients �ūk /�xl to ac-
count for nonlocal effects in �ij

�r�. Moreover, by accounting
for nonlocal effects through the series of Laplacians in Eq.
�56�, which are all evaluated at the point x, use of the inte-

gral formulation for �ij
�r� in Eq. �10� is avoided. The series in

Eq. �56� thus allows nonlocal effects to be included in a
straightforward manner in Eq. �2�.

The coefficients C2
�n� in Eq. �57� from the exponential rep-

resentation of f�r� are shown in Fig. 3. It is apparent that the
n=1 term in Eq. �56�, which accounts for the purely local
contribution to �ij

�r� as verified in Eq. �50�, is by far the
dominant coefficient. The remaining coefficients for
n=2,3 ,4 , . . . correspond to the nonlocal contributions to �ij

�r�

and can be seen in Fig. 3 to decrease only slowly with in-
creasing order n. However, while C2

�1� is clearly the dominant
coefficient, in Eq. �56� the remaining coefficients are multi-
plied by successively higher-order Laplacians of the mean
strain rate field and thus may produce net contributions to
�ij

�r� that are comparable to, or possibly even larger than, the
n=1 local term.

E. Corresponding coefficients for Re�\0

While the coefficients in Eq. �57� are appropriate for
Re��1, in this section we use the exact Gaussian form for
f�r� in Eq. �41� that applies in the Re�→0 limit to obtain the
result for �ij

�r� applicable to low-Re� flows, as may occur in
the near-wall region of wall-bounded turbulent flows. Using
this form for f�r�, it can be shown that for even n, which are
the only nonzero terms from Eq. �43� due to Eq. �44a�, the
r integrals in Eq. �31� are modified only by multiplying
the previous results in Eq. �42� by the factor
��2 /���n�n /2� ! /n!	. The result for Miljk

�0� in Eq. �46� is inde-
pendent of the form of f�r� and thus is unchanged in this
limit, but now mpMiljk

�2� in Eq. �47� is reduced by the factor
2 /�. With the remaining higher-order terms �mp. . .�Miljk

�n� , it
may be readily verified that the result for �ij

�r� in Eq. �56� is
unchanged in this low-Re� limit, but the coefficients C2

�n� are
now given by

C2
�n� =

16n2 − 16n + 36

3�2n + 3��4n2 − 1�� �n − 1�!
�2n − 2�!� 4

�
�n−1� , �58�

where again n=1,2 ,3 , . . .. The effect of the additional factor
in Eq. �58� relative to Eq. �57� is to damp the higher-order

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

C
(n)
2

n

Exponential f (r) (High ReΛ)
Gaussian f (r) (Low ReΛ)

FIG. 3. �Color online� Comparison of rapid pressure-strain co-
efficients C2

�n� from Eq. �57� for the Re��1 exponential f�r� in Eq.
�39� and from Eq. �58� for the Re�→0 Gaussian f�r� in Eq. �41�.
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terms in the Re��1 coefficients, as shown in Fig. 3. It is
apparent that in this Re�→0 limit, only the first nonlocal
term �n=2� in Eq. �56� is significant, with all higher-order
coefficients being negligible. This may introduce significant
simplifications in near-wall modeling, where this limit ap-
plies as y+→0.

F. Relation to Rotta [4]

The present result in Eq. �56� with Eq. �57� for Re��1 or
Eq. �58� for Re�→0 is the nonlocal pressure-strain correla-
tion that rigorously accounts for the effect of spatial varia-
tions in the mean velocity gradients on the turbulence aniso-
tropy. Previously, Rotta �4	 derived some of the components
of Miljk

�0� and mpMiljk
�2� but did not consider �mp. . .�Miljk

�n� for
n�2 and thus did not obtain the full series formulation for
�ij

�r� in Eq. �56�. In particular, Rotta used an inertial-range
form for f�r� similar to Eq. �35� and the Gaussian form in
Eq. �41� to obtain certain components of mpMiljk

�2� in the high-
and low-Reynolds number limits, respectively. Note that
Rotta expressed his results �4	 in terms of the transverse
integral scale L rather than the longitudinal integral scale �.
The two length scales are related by L=0.5� for incompress-
ible flows, and this relation can be used to compare the
present result for mpMiljk

�2� with the limited components ob-
tained by Rotta. In addition, for Re��1 the inertial-range
form of f�r� used by Rotta increases the magnitude of each
of the n=2 integral solutions in Eq. �42�—which are obtained
herein using the exponential form for f�r� in Eq. �39�—by a
factor of 1.36. Using this correction and the standard relation
between L and �, it may be verified that the components of

mpMiljk
�2� given by Rotta are in agreement with the complete

result in Eq. �47� for Re��1 and with the result for
Re�→0 when the factor of 2 /� is accounted for as noted in
Sec. II E.

The agreement with those components of mpMiljk
�2� reported

by Rotta �4	 provides partial validation of the present results.
However, the present results go much further by addressing
the complete components of �mp. . .�Miljk

�n� for all n, thereby al-
lowing a complete formulation of nonlocal effects in the
rapid pressure-strain correlation �ij

�r� due to spatial variations
in the mean-flow gradients �ūi /�xj.

III. NONLOCAL ANISOTROPY TRANSPORT EQUATION

The present result for nonlocal effects in the rapid part
�ij

�r� of the pressure-strain correlation, given by Eq. �56� with
the coefficients C2

�n� in Eq. �57� or �58� and with � in Eqs.
�37� and �40�, can be combined with Eq. �12� for the slow
part �ij

�s� to give �ij in Eq. �2� as

1

k
�ij = − C1

�

k
aij + C2

�1�S̄ij + 

n=2

� �C2
�n��C�

k3/2

�
�2n−2

��2�n−1S̄ij� .

�59�

In homogeneous flows, for which prior purely local models

for �ij have been relatively successful, the Laplacians of S̄ij
in Eq. �59� vanish, and thus the present nonlocal pressure-
strain formulation recovers the local form in Eq. �21� since

C2
�1�=4 /5 in both Eqs. �57� and �58�. For inhomogeneous

flows, when Eq. �59� is introduced in Eq. �2� it gives an
anisotropy transport equation that accounts for both local and
nonlocal effects via the present fundamental treatment of
spatial variations in the mean velocity gradients in Eq. �10�.
Note in Eq. �2� that the definition of Pij with P� Pnn /2

�−ui�uj�S̄ij gives

1

k
�Pij −

2

3
P�ij� � −

4

3
S̄ij + �ailW̄lj − W̄ilalj�

− �ailS̄lj + S̄ilalj −
2

3
anlS̄nl�ij� , �60�

where the mean-flow rotation rate tensor W̄ij is given by

W̄ij �
1

2
� � ūi

�xj
−

� ūj

�xi
� . �61�

From Eq. �60�, the production terms in Eq. �2� thus require
no additional closure modeling, while current standard mod-
els summarized in Refs. �1,2	 may be used for the remaining
�ij and Dij terms.

However, Eq. �59� does not account for possible addi-
tional anisotropic effects in �ij

�r� since the present nonlocal
pressure-strain result in Eq. �56� is based on the central hy-
pothesis that Ril�r� in Eq. �26� can be represented by its
isotropic form in Eq. �18�. Fundamentally based approaches
for any such remaining anisotropic effects in Eq. �59� have
yet to be rigorously formulated, however it has been argued
�e.g., �9,19	� that such additional anisotropy effects may be

represented by higher-order tensorial combinations of aij, S̄ij,

and W̄ij. The most general of such combinations that remains
linear in aij is

1

k
�ij

�aniso� = C3�ailS̄lj + S̄ijalj −
2

3
anlS̄nl�ij�

− C4�ailW̄lj − W̄ilalj� , �62�

where the coefficients C3 and C4 can be chosen to presum-
ably account for such additional anisotropy effects. In gen-
eral, choices for these coefficients vary widely from one
model to another; a summary of various such models is
given in Ref. �2	.

When Eq. �59� is combined with Eq. �62�, it provides an
anisotropy transport equation that accounts for both local and
nonlocal effects, as well as possible additional anisotropy
effects, in the pressure-strain correlation as

Daij

Dt
= − 	1

�

k
aij + 	2S̄ij + 


n=2

� �C2
�n��C�

k3/2

�
�2n−2

��2�n−1S̄ij�
−

1

k
��ij −

2

3
��ij� + 	3�ailS̄lj + S̄ilalj −

2

3
anlS̄nl�ij�

− 	4�ailW̄lj − W̄ilalj� +
1

k
�Dij − �aij +

2

3
�ij�D� , �63�

where the C2
�n� coefficients are given in Eq. �57� or �58�, and

the 	i are defined as
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	1 =
P

�
− 1 + C1, 	2 = C2

�1� − 4
3 ,

	3 = C3 − 1, 	4 = C4 − 1. �64�

By contrast to the integrodifferential equation for aij from
Eq. �2�, with �ij given in integral form by Eqs. �10� and �11�,
nonlocal effects in Eq. �63� are accounted for through the

series of Laplacians of S̄ij evaluated at the location x. This
allows Eq. �63� to be readily implemented in existing com-
putational frameworks for solving the ensemble-averaged
Navier-Stokes equations. Values for the coefficients C1, C3,
and C4 in Eq. �64� may be inferred from prior purely local
models, such as the Launder, Reece, and Rodi �LRR� �19	 or
Speziale, Sarkar, and Gatski �SSG� �9	 models, which are
based on forms of Eq. �63� without the nonlocal effects given
by the series term. However, optimal values for these coef-
ficients may change in the presence of the nonlocal pressure-
strain term in Eq. �63�.

With respect to the remaining terms in Eq. �63�, for high-
Reynolds numbers the dissipation tensor �ij is concentrated
at the smallest scales of the flow, which are assumed to be
isotropic. Thus, consistent with the central hypothesis on
which the present result for the pressure-strain tensor is de-
rived, the dissipation is commonly represented by its isotro-
pic form �ij =

2
3��ij �e.g., �2,6	�, with the result that the dissi-

pation term in Eq. �63� vanishes entirely. The only remaining
unclosed terms when Eq. �63� is used with the ensemble-
averaged Navier-Stokes equations are the transport terms Dij
and D, and these are typically represented using gradient-
transport hypotheses, with several possible such formulations
summarized in Ref. �2	.

A number of different approaches can be taken for solving
Eq. �63�. First, this may be solved as a set of six coupled
partial differential equations, together with the ensemble-
averaged Navier-Stokes equations, to obtain a new nonlocal
Reynolds stress transport closure that improves on existing
approaches such as the LRR and SSG models in strongly
inhomogeneous flows. Alternatively, equilibrium approxima-
tions may be used to neglect the Daij /Dt and Dij terms in Eq.
�63� to obtain a new explicit nonlocal equilibrium stress
model for aij, analogous to the existing local models devel-
oped, for example, by Gatski and Speziale �20	, Girimaji
�21	, and Wallin and Johansson �22	. Perhaps preferably, a
new explicit nonlocal nonequilibrium stress model for aij can
be obtained from Eq. �63� following the approach in Ref.
�23	 by explicitly solving the quasilinear form of Eq. �63�,
namely,

Daij

Dt
= − 	1

�

k
aij + 	2S̄ij + 


n=2

� �C2
�n��C�

k3/2

�
�2n−2

��2�n−1S̄ij� .

�65�

In so doing it is possible to obtain a new explicit form for the
anisotropy aij that accounts for both nonlocal and nonequi-
librium effects in turbulent flows. In particular, prior purely
local representations for aij incorrectly predict the anisotropy
in the near-wall region of turbulent wall-bounded flows, and

the additional nonlocal effects accounted for in Eq. �65� are
expected to address at least some of the shortcomings of
these prior approaches.

Finally, it should be noted that practical use of the nonlo-
cal transport equations in Eq. �63� or �65� will generally

require truncations of the infinite series of Laplacians of S̄ij.
However, retaining even the leading-order terms in the series
addresses nonlocal effects that are neglected in prior purely
local formulations for �ij

�r� such as in Eq. �21�. It is thus
expected that truncations of the series in Eqs. �63� and �65�
will still give improved predictions of the anisotropy due to
spatial nonuniformities in the mean flow when compared to
results from prior approaches based on the purely local rep-
resentation for �ij

�r� in Eq. �21�.

IV. CONCLUSIONS

A rigorous and complete formulation for the rapid
pressure-strain correlation, including both local and nonlocal
effects, has been obtained in Eq. �56� with Eq. �57� for
Re��1 or Eq. �58� for Re�→0 and with � in Eqs. �37� and
�40�. Nonlocal effects are rigorously accounted for through
Taylor expansion of the mean velocity gradients appearing in
the exact integral relation for �ij

�r� in Eq. �10�. The derivation
is based on the central hypothesis that the nonlocality in �ij

�r�

is substantially due to spatial variations in �ūk /�xl in Eq. �10�
and that in order to address this effect all other factors in Eq.
�10� can be adequately represented by their homogeneous
isotropic forms. The resulting rapid pressure-strain correla-
tion in Eq. �56� takes the form of an infinite series of
increasing-order Laplacians of the mean strain rate field

S̄ij�x�, with the n=1 term recovering the classical purely lo-
cal form in Eq. �21� and with the remaining n�2 terms
accounting for nonlocal effects due to spatial variations in
the mean-flow velocity gradients �ūk /�xl.

Aside from the central hypothesis on which the present
approach is based, the sole approximation lies in the need to
specify a form for the longitudinal correlation function f�r�.
The particular specification does not affect the fundamental
result in Eq. �56� and serves only to determine the pressure-
strain coefficients C2

�n�. For the classical exponential form in
Eq. �39� appropriate for Re��1, the corresponding coeffi-
cients are given in Eq. �57�, while for the exact Gaussian
form in Eq. �41� appropriate for Re�→0 the coefficients are
given in Eq. �58�. The integral scale � in Eq. �56� determines
the size of the region around any point over which nonlocal
effects are significant in �ij

�r�. In general, � can be obtained
via Eq. �37�, with C� in Eq. �40� giving good agreement with
the inertial-range form of f�r� in Eqs. �36� and �38� for
Re��1.

The agreement of the present n=1 term with the purely
local form in Eq. �21� obtained by Crow �5	 and with the
limited components obtained by Rotta �4	 for the leading
�n=2� nonlocal term supports the validity of the present deri-
vation. The present results, however, go much further by
accounting for all components �mp. . .�Miljk

�n� for all n, which
together have allowed the complete form of both the local
and nonlocal parts of the rapid pressure-strain correlation
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�ij
�r� to be obtained within the central hypothesis on which

the present approach is based. The present result thus gives a
rigorous nonlocal form of the rapid pressure-strain correla-
tion �ij

�r� for spatially varying mean velocity gradients in tur-
bulent flows. While it is possible that additional nonlocal
effects could arise in some flows due to inhomogeneities in
turbulence variables that are not addressed by the present
formulation, it is expected that the series in Eq. �56� accounts
for the dominant nonlocal effects in flows having strong spa-
tial variations in the mean strain rate field.

Using the present result for �ij
�r� in Eq. �56� with Eqs. �37�

and �40� and with Eq. �57� or �58�, a nonlocal transport equa-
tion for the turbulence anisotropy has been obtained in Eqs.
�63� and �64�. The resulting nonlocal anisotropy equation can
be solved by any number of standard methods, including full
Reynolds stress transport closure approaches, algebraic stress

approaches, or the nonequilibrium anisotropy approach out-
lined in Ref. �23	 based on Eq. �65�. This nonlocal aniso-
tropy equation should give significantly greater accuracy in
simulations of inhomogeneous turbulent flows, including
free shear and wall-bounded flows, where strongly nonuni-
form mean-flow properties and significant large-scale struc-
tures will introduce substantial nonlocal effects in the turbu-
lence anisotropy.
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